

CARRERA DE INGENIERÍA INDUSTRIAL ACREDITADA: MERCOSUR, CEUB

PROGRAMA ANALITICO DE LA ASIGNATURA INFORMATICA I (MAT 204)

I IDENTIFICACION				
Facultad:	FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍA			
Programa de Formación:	LICENCIADO EN INGENIERIA INDUSTRIAL			
Área de Formación:	BASICAS			
Nombre de la asignatura:	INFORMÁTICA I			
Sigla y código:	MAT-204			
Nivel:	TERCER SEMESTRE			
Número de Créditos:	4 (cuatro)			
Total de Horas:	108 horas por semestre 54 Horas Teóricas y 54 Horas Prácticas			
Prerrequisitos:	MAT-103			
Coordinación vertical:	IND-150			
Coordinación horizontal:	MAT-207; FIS-200; IND-130; QMC-206			
Fecha de elaboración:	Septiembre 2013			
Elaborado por:	DEPARTAMENTO DE MATEMATICAS			
Aprobado por:	Jornadas Académicas			

II.- JUSTIFICACIÓN. -

La materia aporta al estudiante con los conocimientos sobre la evolución de la informática, componentes y funcionamiento de las computadoras, lenguajes de programación y su funcionamiento estructurado, llegando a la elaboración de los mismos para usar en computadores y posterior aplicación para resolver problemas.

III.- OBJETIVOS GENERALES. -

- Conocer brevemente la evolución de la informática, también los componentes de un computador y su forma de funcionamiento
- Conocer y utilizar estructuras de programación, repetitiva, alternativa de acuerdo al enfoque jerárquico.
- Elaborar programas con estructuras de programación con estructuras jerárquicas mediante el Lenguaje de PROGRAMACION VISUAL BASIC lenguaje de alto de nivel para su uso en computadora.
- Resolver problemas de aplicación del tipo iterativo, alternativo con vectores (técnicas de búsqueda ordenamiento), manipular matrices (operaciones) también en la hoja electrónica

CARRERA DE INGENIERÍA INDUSTRIAL ACREDITADA: MERCOSUR, CEUB

IV.- CONTENIDOS MÍNIMOS. -

Antecedentes Históricos. - Sistemas Numéricos. - Representación Interna de datos. - Unidades Funcionales de la Computadora. - Conceptos básicos sobre comunicaciones y redes. - Software. - Programación estructurada.

V.- CONTENIDOS ANALÍTICOS. -

UNIDAD I ANTECEDENTES HISTORICOS

TIEMPO: 12 horas

OBJETIVOS ESPECIFICOS:

- Dar a conocer a los alumnos un pantallazo de la historia de la computación desde sus principios.
- Explicar cada una de las generaciones de la computadora.
- Desarrollar los diferentes tipos que existen de computadoras. Por su Configuración, Por su Capacidad y Potencia y Por su Propósito.

CONTENIDOS:

- 1. Historia de la computación.
- 2. Generación de computadoras.
 - 2.1 Primera generación.
 - 2.2 Segunda generación.
 - 2.3 Tercera generación.
 - 2.4 Cuarta generación.
 - 2.5 Quinta generación.
- 3. Tipos de computadoras.
 - 3.1. Por su configuración.
 - 3.1.1. Computadoras analógicas.
 - 3.1.2. Computadoras digitales.
 - 3.1.3. Computadoras hibridas.
 - 3.2. Por su capacidad y potencia.
 - 3.2.1. Mainframe.
 - 3.2.2. Mini Computadora.
 - 3.2.3. Micro Computadoras.
 - 3.3. Por su propósito.
 - 3.4. Propósito Específico.
 - 3.5. Propósito General.

CARRERA DE INGENIERÍA INDUSTRIAL ACREDITADA: MERCOSUR, CEUB

UNIDAD II SISTEMAS NUMERICOS

TIEMPO: 24 horas

OBJETIVOS ESPECIFICOS:

- Desarrollar conceptos básicos de sistemas de números.
- Indicar las operaciones que se pueden realizar con los distintos tipos de sistemas de números.
- Analizar la relación que existe entre dos sistemas de números de base diferente.

CONTENIDOS:

- 1. Introducción.
- 2. Evolución de los sistemas de numeración.
- 3. El sistema decimal.
- 4. Teorema fundamental.
- 5. El sistema binario.
 - 5.1 Suma.
 - 5.2 Resta.
 - 5.3 Multiplicación.
 - 5.4 División.
- 6. El sistema octal.
 - 6.1 Suma.
 - 6.2 Resta.
 - 6.3 Multiplicación.
 - 6.4 División.
- 7. El sistema hexadecimal.
 - 7.1 Suma.
 - 7.2 Resta.
 - 7.3 Multiplicación.
 - 7.4 División.
- 8. Conversiones entre los sistemas de numeración.

UNIDAD III REPRESENTACIÓN INTERNA DE DATOS

TIEMPO: 6 horas

CARRERA DE INGENIERÍA INDUSTRIAL ACREDITADA: MERCOSUR, CEUB

OBJETIVOS ESPECIFICOS:

- Explicar la representación interna de datos y como se desarrollará la codificación alfanumérica.
- Desarrollar la representación de números enteros.

CONTENIDOS:

- 1. Introducción,
- 2. Codificación alfanumérica.
 - 2.1 ASCII.
 - 2.2 BCD.
 - 2.3 EBCDI.
- 3. Representación de Números Enteros.
 - 3.1 Módulos Signo.
 - 3.2 Complemento a Uno.
 - 3.3 Complemento a Dos.
 - 3.4 Exceso 2ⁿ¹

UNIDAD IV UNIDADES FUNCIONALES DE LA COMPUTADORA

TIEMPO: 18 horas

OBJETIVOS ESPECIFICOS:

- Enseñar todas las partes por la que está formada una computadora, explicando sus diferencias y sus funcionalidades. Desarrollar la representación de números enteros.
- Explicar las definiciones de contador y registro de instrucciones y secuenciador.
- Identificar el soporte de información y las unidades de entrada y salida, dando definiciones de cada una de las partes que consta la computadora como sus medios.

CONTENIDOS:

- 1. Arquitectura de Computadoras.
 - 1.1 Unidad Central de Proceso.
 - 1.2 Memoria.
 - 1.2.1. Clasificación por su jerarquía.
 - 1.2.1.1. Memoria Tampón.
 - 1.2.1.2. Memorias Centrales.
 - 1.2.1.3. Memorias de Masa.
 - 1.2.2. Clasificación por su tecnología.
 - 1.2.2.1. Memoria RAM.
 - 1.2.2.2. Memoria ROM.
 - 1.2.2.3. Memoria PROM.
 - 1.2.2.4. Memoria UV PROM.
 - 1.3. Unidad de Control.
 - 1.3.1. Contador de Instrucciones.

CARRERA DE INGENIERÍA INDUSTRIAL ACREDITADA: MERCOSUR, CEUB

- 1.3.2. Registro de Instrucciones.
- 1.3.3. Secuenciador.
- 1.4. Unidad Aritmética Lógica.
- 1.5.Bus de Datos.
- 1.6.Bus de Direcciones.
- 1.7. Bus de Control.
- 1.8. Soporte de información y unidades de entrada / salida.
- 1.9. Medios perforados.
- 1.10. Medios Magnéticos.
- 1.11. Medios Ópticos.
- 1.12. Teclado, Monitor.
- 1.13. Impresoras.
- 1.14. Otras Unidades de entrada y salida.

UNIDAD V CONCEPTOS BÂSICOS SOBRE COMUNICACIONES Y REDES

TIEMPO: 6 horas

OBJETIVOS ESPECIFICOS:

- Explicar los conceptos básicos sobre las comunicaciones definiendo los tipos de seriales.
- Desarrollar los tipos de transmisión y las clasificaciones de redes.

CONTENIDOS:

- 1. Introducción.
- 2. Tipos de seriales.
 - 2.1 Serial Digital.
 - 2.2 Serial Analógica.
- 3. Tipos de transmisión.
 - 3.1. Transmisión en paralelo.
 - 3.2. Transmisión en serie.
- 4. Clasificación de redes.

CARRERA DE INGENIERÍA INDUSTRIAL ACREDITADA: MERCOSUR, CEUB

UNIDAD VI SOFTWARE

TIEMPO: 18 HORAS

OBJETIVOS ESPECÍFICOS:

- Desarrollar los tipos de software que son básicos en la unidad. Desarrollar los tipos de transmisión y las clasificaciones de redes.
- Definir los lenguajes de programación y su clasificación.
- Desarrollar los programas, rutina y subrutina del software.

CONTENIDOS:

- 1. Tipos de Software.
- 2. Lenguajes de programación.
- 3. Clasificación de los lenguajes de programación.
 - 3.1. Lenguaje Máquina.
 - 3.2. Lenguaje Ensamblador.
 - 3.3. Lenguaje de alto nivel.
- 4. Compiladores e intérpretes.
- 5. Instrucción.
- 6. Programas.
- 7. Rutina.
- 8. Subrutina.

UNIDAD VII PROGRAMACION ESTRUCTURADA

TIEMPO: 24 horas

OBJETIVOS ESPECÍFICOS:

- Entender y dominar los pasos para la solución de un problema que comprende los algoritmos.
- Definir las series de la programación estructurada.
- Emplear matrices en los algoritmos y plantear ejemplos de la unidad.

WHAT IN THE PARTY OF THE PARTY

Facultad de Ciencias Exactas y Tecnología

CARRERA DE INGENIERÍA INDUSTRIAL ACREDITADA: MERCOSUR, CEUB

CONTENIDOS:

- Introducción.
- 2. Pasos a seguir para la solución de un problema.
 - 2.1. Análisis del problema.
 - 2.2. Algoritmo.
 - 2.3. Representación del algoritmo.
 - 2.3.1. Por qué usar Diagrama de Flujo.
 - 2.3.2. Que es un diagrama de flujo.
 - 2.3.3. Símbolos del diagrama de flujo.
 - 2.3.4. Reglas generales para la elaboración de un diagrama de flujo.
 - 2.3.5. Estructura de un diagrama de flujo.
 - 2.3.6. Toma de decisiones.
 - 2.3.7. Ciclos.
 - 2.3.8. Ciclos Controlados.
 - 2.3.9. Ciclos Anidados.
 - 2.3.10. Uso de Conectores.
 - 2.3.11. Notas explicativas en los diagramas de flujo.
 - 2.3.12. Subrutinas.
 - 2.4. Codificación.
 - 2.5. Ejecución de programa,
- 3. Programación Secuencial.
- 4. Programación Alternativa.
- 5. Programación Iterativa.
- 6. Series.
- 7. Vectores.
- 8. Matrices.
- 9. Archivos.

VI.- METODOLOGÍA. -

Para el dictado de los contenidos se ha determinado los siguientes métodos de enseñanza:

- Clases de carácter teórico-conceptual: Clases a cargo del profesor, a modo orientador, presentando los temas para situar intelectualmente a los alumnos en el desarrollo de su razonamiento lógico. Su desarrollo se basará en el uso de elementos auxiliares para la enseñanza, como pizarra, proyector de multimedia.
- Desarrollo de Trabajos Prácticos: Los conceptos introducidos en las clases teóricas, especialmente los relativos a la solución de problemas y aplicaciones de la vida real, tendrán una componente práctica basada en la propuesta y resolución de problemas, de carácter

CARRERA DE INGENIERÍA INDUSTRIAL ACREDITADA: MERCOSUR, CEUB

individual o grupal, así como también la investigación de tópicos referentes a las unidades programáticas.

- Prácticas de Laboratorio: Se utilizarán los Laboratorios de Matemáticas para la realización de prácticas específicas que permitan conocer el uso de sistemas de aplicación computacionales.
- Elaboración del proyecto final de la materia: El proyecto es de carácter grupal, consistente en un trabajo de investigación sobre aplicación de los problemas (Nivel conceptual, intermedio y físico) de un caso real, proporcionado por la cátedra. El proyecto deberá ser entregado en la fecha fijada por la cátedra.

VII.- MEDIOS. -

Uso de pizarra acrílica, borradores, marcadores, uso de la voz, de la multimedia.

VIII.- EVALUACIÓN. -

La evaluación se realizará siguiendo los parámetros que a continuación se describen.

ITEM	DESCRIPCIÓN	PROCENTAJE	TEMAS
1	2 Exámenes Prácticos	50 %	1,2,3 y 4,5,6,7
2	1 Examen Semestral	30 %	Todo lo avanzado
3	1 Proyecto Final	20%	Cualquiera de lo avanzado

1) Primer examen práctico

La evaluación del primer parcial tendrá 3 componentes:

- Teórico, conceptual
- Razonamiento lógico en la resolución de problemas reales referente a modelado de datos.
- Práctico en laboratorio de Matemáticas en lo referente a la aplicación de sistemas computacionales.

2) Segundo examen práctico

La evaluación del segundo parcial tendrá 2 componentes:

- Razonamiento lógico en la resolución de problemas.
- Práctico en la resolución de ejercicios en laboratorio de Matemáticas.

3) Proyecto

La evaluación del proyecto final de la materia se realizará en dos fases: Primera, será la presentación de un modelo conceptual, intermedio y físico de un problema de un caso real. Segunda, será la implementación del diseño de la primera fase en algún sistema computacional.

4) Examen semestral

CARRERA DE INGENIERÍA INDUSTRIAL ACREDITADA: MERCOSUR, CEUB

La evaluación final será teórica y se aplicará el criterio de razonamiento lógico en la resolución de problemas referente a Informática I.

IX.- BILIOGRAFÍA. -

BIBLIOGRAFIA BASICA

- NORTON PETER, Introducción A Las Computación, ED. McGrawHill, 1994.
- H. SANDERS DONAL, Informática: Presente Y Futuro, ED. MCGrawHill, 1986.
- STEVEHEN I. SNOVER, Juegos Matemáticos, ED. Anaya Multimedia, 1988.
- JEAN DOMINIQUE WARNIER, Lógica De Construcción De Programas.
- J.C. MASON, Métodos Matriciales.

BIBLIOGRAFIA COMPLEMENTARIA

 VARIOS AUTORES, Robótica Autónoma: Acercamiento a Algunos Problemas Centrales; -ED. Universidad Distrital Francisco José de Caldas, 2014